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ABSTRACT

The object-oriented geometry engine for Monte Carlo particle transport simulations is described.
The C++ class library is based on the Constructive Solid Geometry approach, which allows con-
structing an arbitrary geometry in terms of boolean operations on �nite closed primitive bodies.
It allows one to build hierarchical, tree-like structures which contain elementary and composite
bodies. The paper covers an internal structure of the engine and its use in the frame of the mars
code system. Implementation issues and optimization techniques are discussed. The geometry
engine is tied with a visualization subsystem, which is based on the Open Graphics Language
(OpenGL). The subsystem handles wire-framed and solid bodies, supports orthonormal or per-
spective projections, rotations and shifts, clipping by arbitrary planes, lighting with di�erent
light sources. The user interface based on the Tcl-Tk package is also described.

1. INTRODUCTION

The use of the Monte Carlo simulation method in solving shielding, energy deposition and other
particle transport problems is common nowadays. The Monte Carlo codes may include an inter-
face to detector and accelerator component databases, drawing and CAD programs which handles
complicated geometry in scienti�c and engineering applications. Exciting opportunities in this
area are related to an implementation of the object-oriented (OO) languages and techniques.

Any simulation code can be splitted into few almost independent parts: geometry description,
tracking, event generator, physics interactions etc. The well known codes (e.g., geant [1] and
mars [2]) developed over many years, are written in FORTRAN. The most promising advantages
of the object-oriented approach (for geometry modeling especially) is almost direct mapping
between real world description and abstract data handling possibilities, provided by the OO

language.



2. GEOMETRY DESCRIPTION

There are two standard (along with various modi�cations) approaches to the geometry modeling
that are used in di�erent Monte Carlo codes: boundary surface representation and constructive
solid geometry.

In the Boundary surfaces representation, zones with di�erent tracking properties are built
of the mathematically de�ned surfaces. From a practical point of view, the chosen surfaces are
usually described by the low-order mathematical equations. Each zone consists of a list of surfaces
with proper normal vectors in each point. This approach is rather general and, in principle, can
give one a possibility to work with any surface, described by a mesh of the points. However, this
approach can have some performance penalty during the tracking in the complicated geometry.
For the OO systems, this approach was chosen by gismo developers [4].

In the Constructive Solid geometry representation, zones are de�ned as combinations of the
elementary bodies such as cube, cone, cylinder etc. A complex geometry description is built using
the logical operations with volumes, such as union, intersection and di�erence. This approach has
the following advantages: a simplicity in describing standard accelerator and detector components
(pipes, boxes, cones, piramides etc), lower memory constraints, a provision for more internal
optimization during the tracking. For the OO systems, this approach was chosen by the geant4
team [3].

For our implementation, the constructive solid geometry approach is chosen. A library of the
elementary bodies inherited from an abstract base class Shape is created. These primitive shapes
represent untransformed, i. e. non-rotated and non-translated, bodies positioned in a center of
their own coordinate system. The elementary bodies provide (thanks to polymorphism) the
uniform interface and de�ne functions of their own, which calculate a distance to enter the body,
a distance to leave the body and a location of a given point (inside or outside). The composite

bodies are de�ned as a subclass of the shapes, with the same uniform interface. A data structure
for the composite body representation [5], is an inverted binary tree (see Fig. 1). Leaf nodes are
elementary solids, and internal nodes represent the logical operations. So, if one has N primitive
solids in one composition, there are (N � 1) composite ones. Composite solids are represented
by a pointer to leaves and transformations from a global to the local coordinate system for each
leaf. The code classi�es rays and points with respect to the solid and returns the classi�cation
to the user. The classi�cation is based on the boolean algebra rules. An example of positioning
is presented in Table 1.



Table I. Boolean rules for the Where method

Operation Left Right Composite

Union In In In

In Out In

In Surface In

Out In In

Out Out Out

Out Surface Surface

Surface In In

Surface Out Surface

Surface Surface Surface

Intersection In In In

In Out Out

In Surface Surface

Out In Out

Out Out Out

Out Surface Out

Surface In Surface

Surface Out Out

Surface Surface Surface

Di�erence In In Out

In Out In

In Surface Surface

Out In Out

Out Out Out

Out Surface Out

Surface In Out

Surface Out Surface

Surface Surface Surface

A second type of the objects is positioned one, containing a pointer to the parent volume
and a list of children which are embedded into the parent without any cross-sections. These
objects also contain a reference to the unpositioned shape (elementary or composite one) and a
parent-to-child transformation. This approach, probably more complicated for implementation,
is more intuitive and allows one to use a prede�ned composite object like library. The possible
memory structure of objects is shown in Fig. 2.

3. IMPLEMENTATION ISSUES

The engine is implemented using the C++ object-oriented language under the Solaris OS-5.4.
The compiler, GNU g++, promises high portability level due to its extremely portability. The



container management code is taken from the Standard Template Library (part of the upcoming
C++ standard). The Tcl version 7.4 and Tk version 4.0 are taken as the most stable releases,
which now are ported to the Windows and Macintosh environment.

There are two main classes on the top of the system, GeometryServer and GeometryTracker,
which glue all parts together. The GeometryServer keeps a reference to the mother volume,
a list of all the registered unpositioned solids, a list of all the registered transformations, and
an interface to the object allocation and deallocation. The GeometryTracker performs particle
tracking through the media, also keeping a cache information for the optimal tracking.

A memory management is implemented using the allocator approach, which hides a real
memory interface and allows one, using specialised allocator, to have the objects stored in the
persistent memory (object-oriented database).

The optimization technique is based on a box enclosure approach. Each node supports the
orthonormal box in the world coordinate system, which encapsulates the original volume. This
proxy boxes are build at the initialization stage. The tracking code �rst checks a possible inter-
section of the enclosure box and a ray, thus avoiding a search for all the nodes.

4. VISUALIZATION

The visualization subsystem is based on the OpenGL [6] 2-D / 3-D graphics library. OpenGL
is a high-speed system-independent modern graphics library, which allows one to use a three-
dimensional rendering with arbitrary lighting, colors and shadows. The OpenGL subsystem is
included in all the modern UNIX and Windows system.

Each unpositioned volume builds its own representation as a wire-framed and a solid body
(as display list in the OpenGL terms), including a set of di�erent colors and lighting. The
visualization subsystem handles also a support to the orthonormal or perspective projections,
rotations and shifts. Up to six arbitrary clipping planes and up to eight light sources are supported
as a minimum guaranteed by the OpenGL speci�cation. The Tcl-Tk package [7] is chosen for
the user interface because of its portability and simplicity. It provides the uniform and rich user
interface and is supported for all the graphics devices (X11 and Windows GDI). The binding
between OpenGL and Tcl-Tk is based on the OGLTK widget [8].

5. EXAMPLES

The visualization subsystem is adopted to display the mars [2] code geometry input con�gu-
ration. The main window consists of a model view which is rendered by the OpenGL server,
and a control view, which is binded to Tcl-Tk. User can rotate the �gure using sliders or just
drugging object by a mouse. The buttons on the right side allow to perform a translation in
any direction, to switch wire-frame / solid representations and to control the lighting. The CMS



detector geometry con�guration is shown both in a wire-frame (see Fig. 3) and a solid body
representations (Fig. 4) including lighting and clipping.

6. CONCLUSIONS

The object-oriented geometry module based on the constructive solid geometry approach is cre-
ated. Modern visualization software is used for geometry representation, veri�cation and for
visual tracking. This is a part of the modi�ed OO version of the mars code.
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Figure 1. Logical operations as a binary tree representation.
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Figure 2. Memory layout of the geometry module.



Figure 3. CMS detector, wire-frame representation.

Figure 4. CMS detector, solid body representation.


